
More Than Obvious: 

for I 

ow-level concentrations of organic and 
inorganic chemicals are often report­
ed as "nondetect" or "less-than" values. 
These concentrations are known only to 
be somewhere between zero and the labo­

ratory's reporting level (RL). Fifteen years ago, ES&T 
published an article titled "Less Than Obvious" (1) 
that outlined methods for the statistical analysis of 
nondetect data. Since that time, the fields of survival 
analysis and reliability analysis (2, 3) have contin -
ued to improve on methods for handling censored 
data-those observations reported only as being 
above or below a threshold value. For example, 
methods for hypothesis tests and regression for cen­
sored data are now standard features of statistics 
software. Decades-old methods in these two fields 
that were originally applied only to "greater thans" 
can also be applied to the "less thans" of low-level 
environmental concentrations. 

Yet, regulatory guidance for the environmental 
community has generally not incorporated these 
procedures. This article provides an overview of 
methods currently available for interpreting data 
with nondetects. More detail can be found else­
where (4, 5). 

Computing descriptive statistics 
Nondetects occur in many disciplines, including air 
quality, water quality, astronomy, pharmacology, 
and ecology. Long considered "second-class" data, 
nondetects have complicated the familiar compu -
tations of descriptive statistics, tests of differences 
among groups, and development of regression mod­
els. Within environmental sciences, the most com-
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mon procedure continues to be substitution of some 
fraction of the RL for nondetects, even though 15 
years ago this was known to be wrong (1). The result 
is inaccurate statistics, poor and misleading regres­
sion models, and incorrect decisions about whether 
to remediate. There are better ways. 

Current environmental guidance recommends 
three methods for computing descriptive statistics 
of data with nondetects: substituting one-half (or 
another fraction) of the RL; the delta-lognormal 
method (D-LOG), which was originally known as 
Aitchison's method; and Cohen's method (6-12). 
However, all three methods are considered old tech­
nology that exhibit either bias or higher variability 
than other methods now available. 

Numerous studies have found that substituting 
one-half of the RL is inferior to other methods. Hel­
sel and Cohn stated that the method "represents a 
significant loss in information" compared to other, 
better methods ( 13). Singh and Nocerino reported 
that it produced "a biased estimate of mean with the 
highest variability" (14), and Lubin et al. showed that 
it "results in substantial bias unless the proportion 
of missing data is small, 10 percent or less" (15). Re­
source Conservation and Recovery Act (RCRA) guid­
ances recommend substitution only when data sets 
contain <15% nondetects, in which case the method 
is "satisfactory" (8, 12). However, that judgment ap­
pears to be based only on opinion ratherthan on peer­
reviewed science. The U.S. EPA's2004 Local Limits 
Development Guidance Appendices break from this 
pattern by not recommending substitution methods 
(16). Instead, this guidance recognizes that substitu­
tion results in a high bias when the mean or standard 
deviation is calculated and that performance worsens 
as the proportion of nondetects increases. 

Substitution introduces more problems today 
than 15 years ago, because most data today have 
multiple RLs. Several factors cause multiple RLs, in­
cluding levels that change over time, samples with 
different dilutions, interferences from other con­
stituents, different data interpretations for samples 
sent to multiple laboratories, or variations in RLs 
because methods for setting them have changed. 
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Regardless of the cause, substituting a fraction of 
these changing limits for nondetects introduces a 
signal unrelated to the concentrations present in the 
samples. Instead, the signal represents the pattern 
of Rls used. In the end, false trends may be intro -
duced---or real ones canceled out. 

Aitchison first applied his D-LOG method to eco­
nomic data for which zero was a plausible value (17). 
As proposed, the method models detected obser -
vations with a log normal distribution, with the as­
sumption that all nondetects equal zero. The only 
difference between D-LOG and a simple substitution 
of zeros for all nondetects is how the mean of detect­
ed values is computed. Gilliom and Helsel found that 
the performance of D-LOG was essentially identical 
to that of zero substitution (18). Both methods had 
high rates of errors. Yet, D-LOG is still recommended 
in some guidance documents, including the EPA's 
Guidance for Data Quality Assessment (9). 

EPA's Technical Support Document for Water 
Quality-Based Toxics Control modifies D-LOG, al­
though the name remains the same (6). Nondetects 
are assumed to fall at the Rls rather than at zero. 
This change produces the highest possible value for 
the overall mean yet underestimates the standard 
deviation. The modified method has the same pri­
mary flaw as substituting the RL for all nondetects: 
The values substituted introduce a signal arising 
from changing Rls rather than from concentra -
tions in the samples. Therefore, the poor perfor­
mance of substituting the RL described by Gilliom 
and Helsel (18) and subsequent authors applies to 
EPA'smodified D-LOG procedure. Hinton evaluated 
the modified procedure directly and found that bet­
ter procedures outperformed it ( 19). 

Cohen's method isbased on maximum likelihood 
estimation (MLE), which fits the best lognormal dis­
tribution to the data (20). MLE requires more com­
puting power than was available to most scientists 
when it was developed in the late 1950s. So, Cohen 
produced a lookup table of approximate coefficients 
to decrease the mean and standard deviation of de­
tected observations, in order to estimate the mean 
and standard deviation of the entire distribution 
(20). The coefficients are a function of the propor­
tion of nondetects in the data set. Cohen's meth -
od assumes that data follow a normal distribution 
and is developed for a single censoring threshold 
or RL. 

Both assumptions are important limitations to 
how the method is applied today. Few modern data 
sets have only one RL, so data must be re-censored 
at the highest level before the tables can be used. 
For example, with Rls of 1 and 10 units, all detected 
observations between 1 and 10 (and all nondetects) 
must be designated as <10 units before the tables 
can be used. This assumption causes information 
to be lost, introducing error. Today, the lognormal 
distribution is considered more realistic than the 
normal distribution for most environmental data. 
Cohen's method is often computed with the loga -
rithms of data, and estimates of mean and standard 
deviation of logarithms are transformed back into 
original units. This approach introduces a bias for 
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data with <50 observations (13, 21). 
Cohen's method is now totally unnecessary. To­

day, statistical software can easily handle multiple 
Rls and provide more accurate solutions to maxi -
mum likelihood equations. 

Current methods 
Modern MLE software, imputation, and the Kaplan­
Meier method are three more accurate methods 
for computing statistics on data with nondetects. 
Each is now available in the survival analysis or re­
liability analysis sections of commercial statistics 
software. 

MLE solves a "likelihood equation" to find the 
values for mean and standard deviation that are 
most likely to have produced both nondetect and 
detected data. To begin, the user must choose a 
specific shape for the data distribution, such as the 
lognormal. Both detected observations and the pro­
portion of data falling below each RL are used to fit 
the curve. M LE does not work well for data sets with 
<50 detected values, where 1 or 2 outliers may throw 
off the estimation, or situations in which insuffi -
cient evidence exists for one to know whether the 
assumed distribution fits the data well (13, 14, 21). 

Imputation methods fill in values for censored 
or missing observations without assigning them all 
the same value. The distribution of data, and per­
haps other characteristics, must be specified. For 
example, regression on order statistics (ROS) is a 
simple imputation method that fills in nondetect 
data on the basis of a probability plot of detects (13, 
21). Multiple Rls can be incorporated. MLEs of mean 
and standard deviation can also be used to impute 
missing values (22). 

Because detected observations are used as mea­
sured, imputation methods depend less on assump­
tions of distributional shape than the MLE approach. 
As a result, imputation methods generally perform 
better than MLE with small sample sizes or when 
the data do not exactly fit the assumed distribution. 
For example, robust ROS estimates of mean and 
standard deviation performed better than MLE for 
sample sizes of <50 (13, 21). EPA (16) and the state of 
Colorado (23) have incorporated ROS methods into 
recent environmental guidance documents. 

In medical and industrial statistics, Kaplan-Mei­
er is the standard method for computing descriptive 
statistics of censored data (2, 3). It is a nonparametric 
method designed to incorporate data with multiple 
censoring levels and does not require specification 
of an assumed distribution. It estimates the percen­
tiles, or cumulative distribution function (CDF), for 
the data set. The mean equals the area beneath the 
CDF (2). Kaplan-Meier is also a counting procedure. 
A percentile is assigned to each detected observa -
ti on, starting at the largest detected value and work­
ing down the data set, on the basis of the number of 
detects and nondetects above and below each obser­
vation. Percentiles are not assigned to nondetects, 
but nondetects affect the percentiles calculated for 
detected observations. The survival curve, a step­
function plot of the CDF, gives the shape of the data 
set (Figure 1 ). 
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Kaplan ... Meier survival curve 
This nonparametric method is designed to incorporate 
data with multiple censoring levels and to estimate the 
percentiles, or cumulative distribution function. The 
concentration scale goes from right to left because the 
data have been "flipped". The red line is the data plot, 
and the blue line is the median value. 
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The Kaplan-Meier method has been used pri­
marily for data with "greater thans", such as time 
until a disease recurs. For this method to be applied 
to "less thans", such as low-level chemical concen -
trations, data values must be individually subtracted 
from a large constant, or "flipped" ( 4), before the 
software is run. Flipping data is necessary only be­
cause of the way commercial software is now coded; 
it may become unnecessary with future versions as 
Kaplan-Meier becomes more widely used for analy­
sis of "less-than" data. One caution is that estimates 
of the mean, but not percentiles, will be biased high 
with this method when the smallest value in the 
data set is a nondetect. 

Testing hypotheses 
Little guidance has been published for testing dif­
ferences among groups of data with non detects. The 
most frequently recommended method is the test of 
proportions, also called contingency tables ( 7, 8 ). 
This test is most appropriate for data with only one 
RL, because all the data will be placed into one of 
two categories: below or above the RL. Thus, the ap­
proach tests for differences in the proportion of de­
tected versus nondetected data. Information is lost 
on the relative ordering between detected values; 
this is captured and used by nonparametric tests 
such as the rank-sum test. Moreover, the use of the 
test of proportions on data with multiple Rls re­
quires that values must be re-censored and reported 
as either below or above the highest RL. Compared 
with methods that handle multiple limits, this ap­
proach loses information. Nevertheless, the primary 
advantages of the test of proportions are its simplic­
ity and its availability in familiar software. 

Unfortunately, the most commonly used test pro­
cedure is substituting one-half (or another fraction) 
of the RL before running standard tests such as the 
t-test. For data with one RL, Clarke demonstrated the 
significant errors produced by this procedure and by 

imputation methods akin tothe ROS method (24). 
Errors result from the arbitrary assignment of values 
to specific samples. The best results are obtained 
by first ranking the data (rankits) sothat all nonde­
tects are tied at the lowest rank (24). The subsequent 
t-test on the ranks approximates a nonparametric 
rank-sum test. As highlighted 15 years ago, standard 
nonparametric tests such as the rank-sum test work 
very well for analysis of data with one RL, whereas 
t-tests after substitution or imputation do not (1). 

The Wilcoxon rank-sum and Kruskal-Wallis tests 
are sometimes recommended for comparing data 
with a single RL ( 7, 8 ). These nonparametric tests 
compare whether one group generally produces 
larger values than another. However, the Compre -
hensive Environmental Response, Compensation, 
and Liability Act (Superfund) guidance states that 
the Kruskal-Wallis test should not be used when 
>40% nondetects are present (7). Why this recom -
mendation is made is unclear because no such limi­
tations have been reported for these methods. 

The RCRA guidance addendum makes the oppo­
site recommendation: Use standard nonparametric 
tests rather than the test of proportions ( 8). Differ -
ences in the high ends of the distributions, if pres­
ent, will be picked up by nonparametric tests, even 
at high levels of censoring. Groups will be found to 
differ iftheir proportions ofnondetects differ, even 
if overall proportions are high (4). For example, sta­
tistically significant differences were found with the 
Kruskal-Wallis test (4) between the distributions of 
trichloroethylene (TCE) concentrations within the 3 
groups ofFigure 2, even though -90% of the data are ........ , 
Kruskal-Wallis test 
Censored box plots of three residential densities 
with different patterns of trichloroethylene contam -
ination, as determined by the Kruskal-Wallis test. 
Nondetects are 100% for low density, 91% for medi­
um, and 80% for high. The reporting limit is 5 µg/L. 
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nondetects. Medium and high residential densities 
produced some high TCE concentrations, whereas 
the low-density residential group did not. 

Guidance has been lacking on methods fortesting 
data with multiple Rls. Both parametric and non­
parametric methods for this situation were briefly 
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cited 15 years ago (1) and have not yet been adopted 
in environmental guidance documents. Now, how­
ever, much more detail is available ( 4). Parametric 
methods use MLE to perform tests equivalent to the 
t-test and analysis of variance (ANOVA) on data with 
multiple RLs. No substitution of fabricated values is 
required. Instead, likelihood-ratio tests determine 
whether splitting the data into groups explains a sig­
nificant proportion of the overall variation. If so, the 
means differ among the groups. 

Millard and Devere! pioneered the use of non­
parametric score tests for environmental data in 1986 
(25). These tests, sometimes called the generalized 
Wilcoxon or Peto-Prentice tests, extend the familiar 
Wilcoxon rank-sum and Kruskal-Wallis tests to data 
with multiple RLs. No values are substituted, and no 
re-censoring is necessary. The tests are used to com­
pare the CDFs among groups of data and to deter -
mine whether their percentiles differ. Even if lower 
percentiles are indistinguishable because they are all 
nondetects, differences in higher percentiles will be 
seen if they are significant. The major impediment 
tothe routine use of score tests has been commer­
cial software that is coded to only recognize "greater 
thans'', the form of censored data found in medical 
trials. Environmental data with "less thans" must first 
be flipped before current software can be used (4). 

•••••••• 
Survival function plot 
Trichloroethylene concentrations in groundwater for 
low- (black), medium- (red), and high-density (green) 
residential areas were censored at 3 different Rls: 1, 
2, and 5 µg/L The generalized Wilcoxon test produc­
es a p-value of 0.0003; this means that these 3 groups 
do not all have the same distribution and that differ­
ences exist between the upper ends of the curves. 
Adapted with permission from Reference 4. 
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Figure 3 shows the percentiles of TCE concentra­
tions for data in groups of low-, medium-, and high­
density residential areas. The data are censored at 3 
different RLs: 1, 2, and 5 µg/ L. The generalized Wil­
coxon test produces a p-value of 0.0003; this means 
that these 3 groups do not all have the same distribu­
tion. This is seen in Figure 3 as differences between 
the upper ends of the curves. The upper percentiles 
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of the low-density group remain low in concentra -
ti on, whereas the medium- and high-density groups 
have higher concentrations. Even with 3 RLs and 
90% censoring overall, the Wilcoxon test discerns 
that at least 1 group is different from the others. An 
MLE test on the logarithms of these data also finds 
significant differences. 

Developing regression models 
Regression equations are one of the foundations for 
interpreting environmental data. Fifteen years ago, 
Tobit regression was proposed for use with nondetect 
data (1). Now, more general methods for censored re­
gression are readily available in commercial software 
but have not madetheirway into guidance documents 
or routine use by environmental professionals. Cen­
sored regression re qui res no substitution of fabricated 
data, so the pitfalls of that method can be avoided. 

Slopes and intercepts for censored regression are 
fit by MLE rather than by least squares. This allows 
direct incorporation of nondetect data into mod -
el building. Likelihood ratio tests, rather than the 
familiar partial t- and F-tests, determine the sig -
nificance of each explanatory variable. Likelihood 
statistics for models with and without that explana­
tory variable are compared to determine whether 
an explanatory variable belongs in the regression 
model. lfthese models fit the data equally, the p­
value for that variable is high and the variable can 
be deleted from the model. Likelihood correlation 
coefficients are also available ( 4); analogs to most 
familiar regression statistics can be computed. 

Imputation methods are also avai I able for regres­
sion of censored data ( 15). M LE is used to fit slopes 
and intercepts on the basis of both censored and 
uncensored data. Values of the explanatory variables 
are then input to the regression model to impute val­
ues for the nondetect data. This method has been 
used to estimate values for concentrations of com -
ponents, such as atrazine and its breakdown prod­
ucts ( 26). The imputed values are summed along 
with any detected values to estimate the total mass 
of herbicide. The quality ofthe imputed estimates 
depends on the fit of the regression model and on the 
amount of scatter around the regression line. Com­
parative testing of this versus other methods has not 
yet been done. However, ifthe regression equation 
is significant, then imputed values will outperform 
a simple substitution of one-half (or another frac -
ti on) of the RL for nondetects. 

Nonparametric models for fitting straight lines 
to data with nondetects have advanced in the past 
15 years. Lines based on Kendall's tau correlation 
coefficient have been applied to data in astrono­
my, in which light intensities often include "less­
than" values (27 ). These nonparametric lines fit a 
median surface to data, rather than the mean sur­
face of parametric regression. Outliers have much 
less influence on the Kendall-based lines. Another 
advantage of the Kendall procedure is that, unlike 
lines that use parametric MLE, an equation can be 
fit when both x and yvariables are censored. Ref­
erence 4 provides examples of fitting these Kendall 
lines to environmental data. 
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Three opposing approaches 
Three opposing approaches frequently emerge when 
the use of survival/ reliability analysis methods for 
nondetects is discussed. 

Substitute one-half (or another fraction) of the 
RL if only a few non detects are present. The argu -
ments in favor of this approach are that it is cheap 
and easy and that results can't be too far off when 
only a few values are substituted. On the other hand, 
it places values on these data that are more than is 
actually known, may introduce an artificial signal, 
and produces values based on arbitrary decisions 
because of the vagaries of how Rls are determined 
(anywhere from 2x to 1 Ox the background standard 
deviation are common). Although MLE methods 
work poorly for small data sets, the situations for 
which this argument is most often made, imputation 
and Kaplan-Meier methods, work quite well without 
arbitrary substitutions. 

Don't censor the data. Report the machine read­
ings. The argument for this approach, although false, 
is that standard statistical methods could then be 
used. The argument against it is that Rls reflect the 
inability to determine whether observations differ 
from zero, or from one another. When the RL is 10, 
it cannot be stated with any confidence that ma­
chine readings of 2 and 4 are different. Declaring 
4 to be larger than 2 in a hypothesis test is claim -
ing more than is known. With data reported as "2 ± 
10", weighting methods just as complex as survival 
analysis methods must be used to correctly perform 
computations. 

Substitute the RL or delete nondetects in order 
to get a worst-case scenario. The argument for this 
approach is that a biased answer is better than none. 
However, excellent methods exist for getting an un­
biased answer. A biased-high answer is seldom ac­
ceptable to the party who is paying for cleanup or 
prevention. 

Until method precision increases to the point 
that Rls are not required, scientists must address 
the issue of handling nondetects. Given the impor­
tance, expense, and ramifications of environmental 
decision making, it is now more than obvious that 
environmental scientists should be using survival 
and reliability analysis methods to interpret data 
with nondetects. 

Dennis R. Helsel is a geologist with the U.S. Geological 
Survey in Lakewood, Colo. 
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